Enantioselective synthesis of [alpha]-hydroxy ketones via benzaldehyde lyase-catalyzed c-c bond formation reaction
Enantioselective Synthesis of a-Hydroxy Ketones via Benzaldehyde Lyase-Catalyzed CÀC Bond Formation Reaction
Ayhan S. Demir,a,* ÷zge SÀesÀenoglu,a Elif Eren,a Birsu Hosrik,a Martina Pohl,b,dElena Janzen,b Doris Kolter,c Ralf Feldmann,c Pascal D¸nkelmann,c Michael M¸llerc,*
Department of Chemistry, Middle East Technical University, 06531 Ankara, Turkey,Fax: ( 90)-312-2101280, e-mail: [email protected]
Institut f¸r Enzymtechnologie der Heinrich-Heine Universit‰t D¸sseldorf im Forschungszentrum J¸lich, 52426 J¸lich, Germany
Institut f¸r Biotechnologie 2, Forschungszentrum J¸lich GmbH, 52425 J¸lich, Germany,Fax: ( 49)-2461-613870, e-mail: [email protected]
Present address: MPB Cologne GmbH, Neurather Ring 1, 51063 Kˆln, Germany
ReceivedMay 21, 2001; ReceivedrevisedNovember 19, 2001; AcceptedNovember 23, 2001
Abstract: (R)-Benzoins and(R)-2-hydroxypropiophenone
diphosphate-dependent enzyme was examined with respect
derivatives are formed on a preparative scale by benzalde-
to a broadapplicability of this benzoin condensation-type
hyde lyase (BAL)-catalyzed CÀC bondformation from
reaction in stereoselective synthesis.
aromatic aldehydes and acetaldehyde in aqueous buffer/DMSO solution with remarkable ease in high chemical yield
Keywords: benzoin condensation; biocatalyst; carboligation;
andhigh optical purity. The substrate range of this thiamin
hydroxy ketones; thiamin diphosphate.
The benzoin reaction,[1] one of the oldest CÀC bond-forming
Benzaldehyde lyase (BAL, EC 4.1.2.38) from Pseudomonas
reactions in organic chemistry, has been developed for classical
fluorescens Biovar I was first reportedby Gonza¬les and
organic synthesis using non-chiral catalysts[2] andfor asym-
Vicunƒa.[13] They showedthat this strain can grow on benzoin
metric synthesis using chiral thiazolium andtriazolium salts as
as a sole carbon andenergy source due to the ability of BAL to
catalyst.[3] Numerous other chemical methods for the enantio-
catalyze the cleavage of the acyloin linkage of benzoin yielding
selective synthesis of 2-hydroxy ketones, which are not based on
benzaldehyde. The enzyme used in this study was expressed
CÀC bondformation, have been evolved.[4] As an alternative to
andpurifiedfrom a recombinant Escherichia coli strain. For
chemical methods, enantiomerically pure 2-hydroxy ketones
easier purification a hexahistidine tag was cloned to the C-
are preparedenzymatically[5] by reduction of the correspond-
ing a-diketone with baker×s yeast[6] or an enzymatic kinetic
We investigatedthe potential of BAL for catalyzing CÀC
resolution of the racemate of either 2-peroxo,[7] 2-hydroxy[8] or
bondformation. As shown in Scheme 1, performing the
2-acetoxy ketones.[9] In addition to these methods enzymatic
carboligation reaction with BAL by using benzaldehyde as a
acyloin condensation furnishing a-hydroxy ketone function-
sole substrate in potassium phosphate buffer [(50 mmol LÀ1,
ality in one step has recently gainedincreasing attention.[10]
In our ongoing studies, we established that aromatic aldehydes
(0.15 mmol LÀ1)] at 218 C andmonitoring of the reaction by
can be convertedinto acyloins by a benzoyl formate decarboxy-
HPLC using a chiral stationary phase column with authentic
lase (BFD)-catalyzedreaction. The reaction affords (R)-benzoins
samples as reference showedthe formation of (R)-benzoin
and(S)-2-hydroxypropiophenone [(S)-2-HPP] derivatives
with an ee > 99%, however only in low to moderate yield. The
with high enantiomeric excess andin goodchemical yields.
low solubility of the aromatic substrate in aqueous buffer
However, only meta- and para-substitutedbenzaldehydes could
solution can be regarded as a fundamental problem. With other
be usedas substrates.[11] In a preliminary communication we
ThDP-dependent enzymes, e.g., benzoyl formate decarboxy-
reported the ability of benzaldehyde lyase (BAL), another thi-
lase (BFD) from Ps. putida, we observed that addition of
amin diphosphate (ThDP)-dependent enzyme, for the enan-
cyclodextrin or DMSO as cosolvent facilitates the formation of
tioselective formation of (R)- and(S)-benzoins and(R)-2-HPP
acyloins in high yieldstarting from hydrophobic substrates.[11c]
derivatives via CÀC bondcleavage andCÀC bondforma-tion.[12] In this paper we focus on the synthetic potential of BALwith regardto the ability to catalyze CÀC bondformation on a
preparative scale for the synthesis of enantiopure 2-hydroxy
ketones. Another aim of this work was to give a broadsurvey of
the substrate andproduct range of the BAL-catalyzedCÀC
structural importance of substituents of the substrate alde-
2 (ee 91% to >99%)
hydes with regard to enzyme activity and enantiomeric excess.
¹ VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1615-4150/02/34401096 ± 103 $ 17.50-.50/0
Enantioselective Synthesis of a-Hydroxy Ketones
Accordingly, addition of DMSO (20%, v/v) to the aqueous
drawing properties, and heteroaromatic aldehydes. In contrast
medium containing BAL resulted in the formation of (R)-
to BFD, BAL accepts aromatic aldehydes substituted at the
benzoin starting from benzaldehyde. This conversion worked
ortho-position as well, e.g., compounds 1b ± e. Only a few
almost quantitatively and(R)-benzoin was obtainedin opti-
aromatic aldehydes such as pyridine-3- and -4-carbaldehyde, 4-
cally pure form (ee > 99%). During the reaction most of the
hydroxybenzaldehyde and pyrrole-2-carbaldehyde as well as
benzoin precipitates from the reaction mixture. A small
sterically demanding aldehydes like vanillin, isovanillin and
amount of benzaldehyde was present at the end of the reaction
3,4-dimethoxybenzaldehyde gave either very low yield or no
The reaction was carriedout on a semipreparative scale with
In some cases, e.g., for the halogenatedcompound
different aromatic and heteroaromatic aldehydes and the
observedthe formation of trace amounts of the corresponding
corresponding (R)-benzoins 2a ± s were obtainedin high yield
benzils, a known side reaction which is probably due to
andmostly in enantiomerically pure form (Table 1). The
enantiomeric excess of the products was determined by HPLC
To further demonstrate the usefulness of BAL-catalyzed
on a chiral stationary phase column comparedto racemic
reactions on a preparative scale the synthesis of (R)-3,3'-
products, which were synthesized using classical chemical
dimethoxybenzoin (2i) was performedin a repetitive batch
benzoin synthesis methodology.[14] The absolute configuration
mode. Starting from 2 Â 1.62 g (24 mmol) 3-methoxybenzal-
of the benzoins 2a, b, i, k ± o, r, s was assignedto be R according
dehyde and 60 U BAL, after 6 hours at room temperature the
to a correlation of the optical rotation value of benzoins with
enantiopure product 2i was isolatedin 93% yield.
data from the literature and to HPLC data of commercially
The BAL-catalyzedtransformation of benzaldehyde in the
available enantiomers of benzoins. The absolute configuration
presence of acetaldehyde afforded (R)-benzoin (2a) and(R)-2-
of 2c ± h, j, p, q was assignedassuming a uniform reaction
HPP 3a in enantiomerically pure form. We observedthat the
mechanism. As can be seen from Table 1, BAL is able to
benzaldehyde/acetaldehyde ratio is very important for the
activate and dimerize a broad range of aromatic aldehydes,
product distribution, since excess acetaldehyde resulted in high
substitutedwith electron-releasing as well as electron-with-
yieldformation of (R)-2-HPP, whereas a 1 : 1 ratio of benzal-dehyde/acetaldehyde gave an almost equimolar mixture of(R)-benzoin and(R)-2-HPP.
As expectedfrom the above-mentionedresults, a wide range
Table 1. BAL-catalyzed carboligation of aromatic aldehydes to the
of aromatic aldehydes substituted at ortho-, meta-, and para-
position and heteroaromatic aldehydes were accepted as donor
substrates for the formation of (R)-2-HPP analogues 3a ± p
(Table 2). In general ortho-substituted aromatic aldehydes
afforded HPPs 3 in lower yields than the meta-, and para-
substituted aldehydes. 2-Chlorobenzaldehyde and 2-methyl-
benzaldehyde gave no 2-HPP formation. The preference ofBAL for aromatic substrates is underlined by the observation
that 2,2'-disubstituted benzoins were formed with remarkable
ease, e.g., compound 2e, whereas the corresponding 2-HPP
prolongedreaction time. Interestingly, even sterically demand-
ing aromatic aldehydes were accepted as donor substrates in
the presence of acetaldehyde (3m ± o, Table 2). Enantiomeric
excess of 2-HPP derivatives 3 was determined by chiral phase
HPLC analysis using racemic compounds 3c, o[16] or (S)-
acyloins 3a, d ± l preparedby BFD-catalyzedreaction[11a, c] as
references. The absolute configuration of the acyloins 3a, b, d,
e, g, h, j ± l, p was assignedto be R according to the correlation
of the optical rotation of acyloins with data from the literature
Enantiomeric excess of benzoins 2 was determined by chiral phaseHPLC analysis ( Chiralpak AD column, UV detection at 254 nm,
eluent: n-hexane/2-propanol 90 : 10, flow 0.80 mL minÀ1, 20 8C ) usingracemic compounds as references. 3 (ee 93% to >99%)
Eluent: n-hexane/2-propanol 98:2, flow 0.90 mL minÀ1, 20 8C.
BAL-mediated carboligation of aromatic aldehydes
Eluent: n-hexane/2-propanol 75:25, flow 0.95 mL minÀ1, 20 8C.
and acetaldehyde to the corresponding (R)-2-hydroxypropiophe-
Eluent: n-hexane/2-propanol 10:90, flow 0.95 mL minÀ1, 20 8C.
Table 2. BAL-catalyzed carboligation of aromatic aldehydes and acetal-
the viewpoint of the organic-preparative chemist, it is impor-
dehyde to the corresponding ( R )-2-hydroxypropiophenone derivatives 3.
tant to mention that a crude cell extract of the recombinant E.
coli strain overexpressing the BAL gene[21] is sufficient for
catalysis hence purification of the enzyme is not necessary. As
shown for the synthesis of 3k, it is important to remove the
major fraction of protein by ultrafiltration (cut-off 10 kDa) inorder to facilitate product isolation. In doing so, the desired(R)-2-HPP 3k was isolatedin 65% yieldon a 3-gram scale. As
described for the benzoins, oxidation of acyloins to diketones
was observed in some cases as a side reaction during work-up
or even in aqueous buffer after prolongedreaction time.
The results presentedare in accordwith mechanistic
investigations of other ThDP-dependent enzymes.[11a,22] Since
structural information about BAL is still lacking, a structure-
iscussion of the observedstereocontrol is not yet
possible. Nevertheless, the carboligation must be a conse-
quence of a selective attack of an enamine intermediate to an
acceptor aldehyde yielding (R)-benzoins and(R)-2-HPP
analogues in optically pure form. We expect that our inves-
tigations concerning the substrate andproduct range of this
valuable biocatalyst will be helpful for elucidation of the
Enantiomeric excess of 2-HPP derivatives 3 was determined by chiralphase HPLC analysis ( Chiralcel OB column, UV detection at 254 nm,eluent:isohexane/2-propanol 95 : 5, flow 0.75 mL minÀ1, 20 8C ) using
racemic compounds or ( S )-acyloins (preparedby BFD-catalyzedreaction) as references.[11]
In conclusion, the methoddescribedhere presents a conven-
Chiralpak AD, eluent: isohexane/2-propanol 90 : 10, flow 0.80 mL
ient one-enzyme-catalyzed, highly selective synthesis of (R)-
Chiralcel OB column, eluent: isohexane/2-propanol 98 : 2, flow
benzoins and(R)-2-HPP analogues. The reaction works in
organic-aqueous medium, overcomes the solubility problem
Chiralcel OB column, eluent: isohexane/2-propanol 90 : 10, flow
with organic substrates, andopens the way for large-scale
preparation. The products are obtained in high yield starting
Chiralpak AD column, eluent: isohexane/2-propanol 95 : 5, flow
from simple, easily available aromatic aldehydes and acetal-
dehyde via carboligation reactions. In this way, BAL representsa valuable alternative to BFD concerning the formation of (R)-benzoins.[11b] Since these two enzymes are enantiocomplimen-tary with regardto 2-HPP formation, most members of this
configuration of 3c, f, i, m ± o was assignedassuming a uniform
class of substances, except for ortho-substituted(S)-2-HPP
derivatives, can be synthesized in either enantiomeric form
Recently, several chiral 2-HPP derivatives became of
interest as starting material for the stereoselective synthesesof biologically active substances, especially for pharmaceuti-cals possessing antifungal properties. The 2-HPP derivatives,(R)-1-(3-chlorophenyl)-2-hydroxypropan-1-one (
material for Bupropion,[17] (R)-1-(2,4-difluorophenyl)-2-hy-droxypropan-1-one (3k), starting material for Ro 09-3355[18]
andSM 8668/Sch 39304,[19] and(R)-1-(3,5-difluorophenyl)-2-
Enzymatic syntheses were performedin stand
hydroxypropan-1-one (3l), potential starting material for
1555U88,[20] were synthesizedon a preparative scale. From
(2.5 mmol LÀ1) andThDP (0.15 mmol LÀ1). NMR spectra were recordedon a Bruker DPX 400 or on a Bruker AMX 300. Chemical shifts d arereportedin ppm relative to CHCl3 (1H: d 7.27) and CDCl3 (13C: d 77.0) orDMSO (1H: d 2.49) andDMSO-d6 (13C: d 39.7) as internal standard.
Column chromatography was conducted on silica gel 60 (40 ± 63 mm). TLC
was carriedout on aluminium sheets precoatedwith silica gel 60F254(Merck), andthe spots were visualizedwith UV light (l 254 nm).
Enantiomeric excesses were determined by HPLC analysis using a Thermo
Quest (TSP) GC-LC-MS equippedwith an appropriate optically active
column, as described in the footnotes of the corresponding Tables. GC-massspectra were determined on a phenomenex Zebron ZB-5 capillary column
(5% phenylmethylsiloxane, 30 m, 250 mm; TGC (injector) 2508 C, TMS (ion
source) 2008 C, time program (oven): T
Enantioselective Synthesis of a-Hydroxy Ketones
(R)-1,2-Bis(2-bromophenyl)-2-hydroxyethan-1-one (2d)
3008 C, MS: EI, 70 eV). Optical rotations were
measuredwith a Bellingham & Stanley P20 polarimeter or a Perkin-Elmer
Semisolid; yield: 90% (> 99% ee); [a]20
241 polarimeter. Mps were measuredon a capillary tube apparatus andare
uncorrected. HRMS (EI) and microanalyses were carried out at the
t (S) 23.1 min; Rt (R) 26.4 min; 1H NMR (400 MHz,
Analytical Department, Chemische Institute der Universit‰t Bonn.
3/CCl4): d 6.97 ± 7.93 (m, 8H), 6.22 (d, J 4.9 Hz, 1H), 4.22 (d, J
4.9 Hz, 1H); 13C NMR (100 MHz, CDCl3/CCl4): d 201.6, 138.1, 134.7,133.7, 133.5, 132.4, 130.5, 129.7, 128.2, 127.9, 127.2, 124.6, 123.6, 77.6.
(R)-2-Hydroxy-1,2-bis(2-methoxyphenyl)ethan-1-one (2e)
Hexahistidine-tagged BAL was obtained from recombinant E. coli SG13009cells following a procedure described previously.[11a] One unit (U) of activity
Colorless solid; yield: 87% (> 99% ee); mp 998 C [Lit.[25], mp 98 ± 998 C for
is defined as the amount of enzyme which catalyzes the cleavage of 1 mmol
D : À 125.0 (c 0.9, CHCl3); HPLC (Chiralpak AD, n-
benzoin (1.5 mM) into benzaldehyde in potassium phosphate buffer
hexane/2-propanol 98:2, flow 0.90 mL minÀ1, 20 8C): Rt (R) 31.2 min.; Rt
(0.15 mmol LÀ1) and15% PEG 400 (v/v)] in 1 min at 308 C.
5.92 (d, J 5.1 Hz, 1H), 4.29 (d, J 5.1 Hz, 1H), 3.71 (s, 3H), 3.69 (s, 3H); 13CNMR (100 MHz, CDCl3/CCl4): d 201.6, 158.4, 157.6, 134.0, 131.1, 130.3,129.8, 128.2, 125.8, 120.9, 120.8, 111.4, 111.2, 76.1, 55.5, 55.4.
Representative Example for the Synthesis of (R)-Benzoins:(R)-2-Hydroxy-1,2-diphenylethan-1-one (2a)
(R)-1,2-Bis(3-fluorophenyl)-2-hydroxyethan-1-one (2f)
Benzaldehyde (318 mg, 3 mmol) was dissolved in a mixture of dimethyl
Colorless solid; yield: 80% (97% ee); mp 70 ± 718 C [Lit.[24], mp 73 ± 768 C for
sulfoxide (20 mL) and potassium phosphate buffer [80 mL, 50 mM, pH 7.0,
D : À 38.2 (c 2.5, CHCl3); HPLC (Chiralpak AD): Rt
containing MgSO4 (2.5 mM) and ThDP (0.15 mM)]. After addition of BAL
(R) 18.9 min; Rt (S) 23.9 min; 1H NMR (400 MHz, CDCl3/CCl4): d
(20 U) the reaction mixture was allowedto standat 258 C for 48 h before a
7.67 ± 7.71 (m, 2H), 7.40 ± 7.62 (m, 4H), 6.96 ± 7.32 (m, 2H), 5.77 (d, J
further 20 U of BAL were added. After 62 h no more benzaldehyde was
4.8 Hz, 1H), 4.45 (d, J 4.8 Hz, 1H); 13C NMR (100 MHz, CDCl3/CCl4):
detected (GC-MS). The reaction mixture was extracted with dichloro-
d 197.2, 163.0 (d, J 247 Hz), 162.7 (d, J 248 Hz), 140.9 (d, J 7 Hz),
methane (250 mL) andthe organic layer washedwith water (25 mL) and
135.5 (d, J 7 Hz), 130.7 (d, J 8 Hz), 130.4 (d, J 7 Hz), 124.8 (d, J
riedover Na2SO4. Evaporation of the solvent and
3 Hz), 123.4 (d, J 3 Hz), 121.1 (d, J 21 Hz), 115.9 (d, J 23 Hz), 115.8 (d,
purification of the crude product by crystallization afforded (R)-2-hydroxy-
J 21 Hz), 114.7 (d, J 21 Hz), 75.7.
1,2-diphenylethan-1-one as a colorless solid; yield: 305 mg (96%, > 99% ee);mp 133 ± 1348 C [Lit.[23], mp 132 ± 1338 C for (R)-enantiomer]; [a]22
D : À 118.3 (c 2.5, CH3COCH3) for > 99% ee];
HPLC: (Chiralpak AD) Rt (R) 27.1 min; Rt (S) 34.5 min; 1H NMR(400 MHz, CDCl
(R)-1,2-Bis(3-chlorophenyl)-2-hydroxyethan-1-one (2g)
3/CCl4): d 7.92 (d, J 7.9 Hz, 2H), 7.29 ± 7.52 (m, 8H),
5.97 (d, J 6.1 Hz, 1H), 4.58 (d, J 6.1 Hz, 1H); 13C NMR (100 MHz, CDCl3/CCl4): d 198.9, 139.6, 134.1, 134.0, 129.5, 129.4, 128.9, 128.8, 128.2, 76.5.
Colorless solid; yield: 94% (> 99% ee); mp 76 ± 788 C [Lit.[30], mp 768 C forracemic compound]; [a]20
D : À 31.0 (c 1.2, CHCl3); HPLC (Chiralpak AD): Rt
(R) 20.2 min; Rt (S) 26.2 min; 1H NMR (400 MHz, CDCl3/CCl4): d 7.09 ± 7.82 (m, 8H), 5.76 (d, J 5.7 Hz, 1H), 4.32 (d, J 5.7 Hz, 1H); 13CNMR (100 MHz, CDCl3/CCl4): d 197.5, 140.8, 135.7, 135.6, 135.3, 134.4,
(R)-1,2-Bis(2-fluorophenyl)-2-hydroxyethan-1-one (2b)
130.7, 130.4, 129.5, 129.4, 128.3, 127.5, 126.1, 75.9.
Colorless solid; yield: 68% (96% ee); mp 61 ± 628 C [Lit.[24], mp 60 ± 628 C forracemic compound]; [a]20
D : À 264.1 (c 0.5, CH3OH) [Lit.[11b], [a]20
0.5, CH3OH) for > 99% ee]; HPLC (Chiralpak AD): Rt (S) 17.8 min; Rt
(R)-1,2-Bis(3-bromophenyl)-2-hydroxyethan-1-one (2h)
(R) 20.2 min; 1H NMR (400 MHz, CDCl3/CCl4): d 7.80 ± 7.91 (m, 1H),7.55 ± 7.67 (m, 1H), 6.98 ± 7.30 (m, 6H), 5.91 (d, J 5.6 Hz, 1H), 4.33 (d, J
Colorless solid; yield: 94% (> 99% ee); mp 75 ± 778 C [Lit.[26], mp 758 C for
5.6 Hz, 1H); 13C NMR (100 MHz, CDCl3/CCl4): d 198.6, 164.2 (d, J
253 Hz), 163.5 (d, J 251 Hz), 134.7 (d, J 13 Hz), 134.1 (d, J 12 Hz),
D : À 38.0 (c 2.0, CHCl3); HPLC (Chiralpak AD): Rt
130.6, 131.2, 129.2, 128.9, 124.4, 123.6, 116.2 (d, J 24 Hz), 115.4 (d, J
t (S) 28.0 min; 1H NMR (400 MHz, CDCl3/CCl4): d
7.31 ± 8.30 (m, 8H), 6.01 (d, J 5.5 Hz, 1H), 4.72 (d, J 5.5 Hz, 1H); 13C
NMR (100 MHz, CDCl3/CCl4): d 197.4, 141.1, 137.2, 137.1, 132.9, 132.6,132.2, 131.1, 130.9, 130.8, 127.8, 126.6, 123.6, 75.9.
(R)-1,2-Bis(2-chlorophenyl)-2-hydroxyethan-1-one (2c)
(R)-2-Hydroxy-1,2-bis(3-hydroxyphenyl)ethan-1-one (2j)
Colorless solid; yield: 80% (97% ee); mp 57 ± 618 C [Lit.[30], mp 648 C forracemic compound]; [a]20
D : À 46.0 (c 1.0, CHCl3); HPLC (Chiralpak AD): Rt
Colorless solid; yield: 84% (ee not determined); mp 1508 C [Lit.[27], mp. 173 ±
(S) 21.7 min; Rt (R) 24.1 min; 1H NMR (400 MHz, CDCl3/CCl4): d
7.19 ± 7.47 (m, 8H), 6.32 (d, J 5.8 Hz, 1H), 4.35 (d, J 5.8 Hz, 1H);
(300 MHz, DMSO-d6): d 9.91 (s, 1H), 9.41 (s, 1H), 7.42 (d, J 7.9 Hz, 1H),
13C NMR (100 MHz, CDCl3/CCl4): d 200.8, 136.2, 135.4, 134.2, 133.0,
7.30 (s, 1H), 7.24 (t, J 7.9 Hz, 1H), 7.09 (t, J 7.7 Hz, 1H), 6.95 (d, J
132.8, 132.3, 131.2, 130.2, 129.6, 129.3, 127.8, 126.7, 75.6; HRMS: m/z calcd.
8.0 Hz, 1H), 6.79 (t, J 7.7 Hz, 2H), 6.63 (d, J 8.0 Hz, 1H), 5.87 (s, 2H); 13C
for C14H10O2Cl2 [M À Cl]: 245.0375, found: 245.0372; anal. calcd. for C14H10
NMR (75.5 MHz, DMSO-d6): d 199.1, 157.44, 157.41, 141.2, 136.1, 129.7,
O2Cl2: C, 59.81; H, 3.59%; found: C, 60.07; H, 3.79%.
129.5, 120.3, 119.8, 118.0, 115.1, 114.7, 114.0, 75.7.
(R)-1,2-Bis(4-fluorophenyl)-2-hydroxyethan-1-one (2k)
(dd, J 12, 257 Hz), 162.9 (dd, J 12, 250 Hz), 161.9 (dd, J 12, 257 Hz),160.9 (dd, J 12, 251 Hz), 132.9 (dd, J 4, 11 Hz), 130.7 (dd, J 5, 10 Hz),121.5 (dd, J 3, 14 Hz), 118.8 (dd, J 4, 13 Hz), 112.5 (dd, J 3, 21 Hz),
Colorless solid; yield: 89% (> 99% ee); mp 81 ± 828 C [Lit.[24], mp 80 ± 828 C
111.6 (dd, J 4, 21 Hz), 105.2 (dd, J 26 Hz), 104.7 (dd, J 25 Hz), 72.9 (d,
D : À 95.2 (c 1.1, CH3OH) [Lit.[3c], [a]r:t:
1.0, CH3OH) for 44% ee]; HPLC (Chiralpak AD): Rt (S) 22.5 min; Rt(R) 26.5 min; 1H NMR (400 MHz, CDCl3/CCl4): d 7.84 (m, 2H), 7.25 (m,2H), 7.12 (m, 2H), 7.09 (m, 2H), 5.86 (d, J 5.4 Hz, 1H), 4.12 (d, J 5.4 Hz,1H); 13C NMR (100 MHz, CDCl3/CCl4): d 197.2, 166.7 (d, J 246 Hz),165.7 (d, J 232 Hz), 135.1, 134.9, 132.1 (d, J 9.6 Hz), 130.2 (d, J 9.4 Hz),
(R)-2-Hydroxy-1,2-di(2-naphthalenyl)ethan-1-one (2q)
116.8 (d, J 22 Hz), 116.1 (d, J 20 Hz), 75.4.
Colorless solid; yield: 98% (> 99% ee); mp 1278 C [Lit.[31], mp 125 ± 1268 Cfor racemic compound]; [a]20
D : 21.0 (c 1.1, CHCl3); HPLC (Chiralpak AD, n-
(R)-1,2-Bis(4-chlorophenyl)-2-hydroxyethan-1-one (2l)
hexane/2-propanol 10:90, flow 0.95 mL minÀ1, 20 8C): Rt (R) 18.5 min; Rt(S) 30.0 min; 1H NMR (400 MHz, CDCl3/CCl4): d 6.71 ± 7.76 (m, 14H),5.92 (d, J 6.1 Hz, 1H), 4.86 (d, J 6.1 Hz, 1H); 13C NMR (100 MHz, CDCl
Colorless solid; yield: 95% (> 99% ee); mp 898 C [Lit.[28,30], mp 87 ± 888 C for
4): d 198.9, 137.3, 136.5, 134.5, 134.4, 132.9, 131.5, 129.7, 129.2, 128.9,
D : À 29.0 (c 0.1, CH3OH) [Lit.[3c], [a]r:t:
128.3, 127.9, 127.2, 126.4, 124.7, 122.9, 76.7.
3OH) for 29% ee; Lit.[3b], [a]D: 32.0, (CH3OH) for 76% ee (S)]; HPLC
(Chiralpak AD): Rt (R) 26.7 min; Rt (S) 31.5 min; 1H NMR (400 MHz,CDCl3/CCl4): d 7.75 (d, J 8.5 Hz, 2H), 7.31 (d, J 8.5 Hz, 2H), 7.22 (d,J 8.5 Hz, 2H), 7.15 (d, J 8.5 Hz, 2H), 5.75 (d, J 5.2 Hz, 1H), 4.32 (d, J 5.2 Hz, 1H); 13C NMR (100 MHz, CDCl3/CCl4): d 197.5, 141.1, 137.7,
(R)-1,2-Di(2-furanyl)-2-hydroxyethan-1-one (2r)
135.2, 132.0, 130.8, 129.8, 129.5, 129.4, 75.8.
Brown solid; yield: 88% (92% ee); mp 1368 C [Lit.[2c], mp 135 ± 1368 C forracemic compound]; [a]20
D : À 21.6 (c 0.1, CH3OH) [Lit.[32], [a]20
(R)-1,2-Bis-(4-bromophenyl)-2-hydroxyethan-1-one (2m)
0.01, CH3OH) for 94% ee]; HPLC (Chiralpak AD): Rt (S) 22.8 min; Rt(R) 28.6 min; 1H NMR (400 MHz, CDCl3/CCl4): d 7.90 ± 7.91 (m, 1H),
Colorless solid; yield: 83% (> 99% ee); mp 85 ± 878 C [Lit.[29], mp 95 ± 988 C
7.51 ± 7.52 (m, 1H), 7.44 (d, J 3.6 Hz, 1H), 6.60 (dd, J 1.5, 3.6 Hz, 1H),
6.32 ± 6.36 (m, 2H), 5.84 (d, J 5.6 Hz, 1H), 3.98 (d, J 5.6 Hz, 1H); 13C
D : À 13.0 (c 0.5, CH3OH) [Lit.[3c], [a]r:t:
NMR (100 MHz, DMSO-d6): d 185.2, 152.6, 149.9, 148.5, 143.3, 120.6,
D : À 12.0, (c 0.5, CH3OH) for > 99% ee];
t (R) 32.4 min; Rt (S) 36.5 min; 1H NMR
(400 MHz, CDCl3/CCl4): d 7.65 (d, J 8.5 Hz, 2H), 7.49 (d, J 8.5 Hz,2H), 7.38 (d, J 8.5 Hz, 2H), 7.10 (d, J 8.5 Hz, 2H), 5.72 (d, J 6.1 Hz,1H), 4.29 (d, J 6.1 Hz, 1H); 13C NMR (100 MHz, CDCl3/CCl4): d 197.6,138.1, 132.7, 132.5, 132.0, 130.6, 129.8, 129.7, 123.4, 75.8.
(R)-1,2-Di(2-thienyl)-2-hydroxyethan-1-one (2s)
Colorless solid; yield: 73% (91% ee); mp 1078 C [Lit.[33], mp 108 ± 1098 C for
(R)-2-Hydroxy-1,2-bis(4-methoxyphenyl)ethan-1-one (2n)
D : À 392.0 (c 0.1, CHCl3) [Lit.[32], [a]20
0.1, CHCl3) for 95% ee]; HPLC (Chiralpak AD): Rt (R) 35.0 min; Rt (S)
Colorless solid; yield: 95% (> 99% ee); mp 1128 C [Lit.[2c], mp 109 ± 1108 C
40.6 min; 1H NMR (400 MHz, CDCl3/CCl4): d 7.10 ± 7.40 (m, 4H), 6.41 ±
6.60 (m, 2H), 5.81 (d, J 5.8 Hz, 1H), 4.14 (d, J 5.8 Hz, 1H); 13C NMR
D : À 90.4 (c 1.0, CH3OH) [Lit.[3c], [a]r:t:
(100 MHz, CDCl3/CCl4): d 196.2, 148.1, 143.5, 124.7, 119.6, 119.2, 113.1,
3OH) for 86% ee]; HPLC (Chiralpak AD, n-hexane/2-propanol
1H NMR (400 MHz, CDCl3/CCl4): d 7.85 (d, J 8.6 Hz, 2H), 7.24 (d, J 8.6 Hz, 2H), 7.16 (d, J 8.6 Hz, 2H), 6.82 (d, J 8.6 Hz, 2H), 5.84 (d, J 5.7 Hz, 1H), 4.46 (d, J 5.7 Hz, 1H), 3.85 (s, 3H), 3.76 (s, 3H); 13C NMR(100 MHz, CDCl3/CCl4): d 197.3, 164.2, 159.9, 132.4, 131.9, 129.4, 126.8,
Synthesis of (R)-2-Hydroxy-1,2-bis(3-methoxyphenyl)ethan-
To a suspension of 3-methoxybenzaldehyde (1.62 g, 12 mmol) in dimethyl
(R)-2-Hydroxy-1,2-bis(4-methylphenyl)ethan-1-one (2o)
sulfoxide (40 mL) and potassium phosphate buffer [160 mL, 50 mM, pH 7.0,containing MgCl2 (2.5 mM) andThDP (0.15 mM)] BAL (0.3 U/mL) was
Colorless solid; yield: 94% (> 99% ee); mp 908 C [Lit.[30], mp 898 C for
added and the reaction-mixture stirred at 218 C. After a reaction-time of 3 h
the product, which accumulates as a yellow oil, was separated by
D : À 150.0 (c 0.7, CH3OH) [Lit.[3c], [a]r:t:
centrifugation and 3-methoxybenzaldehyde (1.62 g, 12 mmol) was added
3OH) for 82% ee; Lit.[3b], [a]D: 107.0, (CH3OH) for 82.5% ee (S)];
to the buffer solution. The reaction-mixture was stirred for an additional 3 h
t (R) 30.2 min; Rt (S) 36.0 min; 1H NMR
at 218 C before extraction with dichloromethane (3 x 50 mL) was carried out.
3/CCl4): d 7.83 (d, J 8.1 Hz, 2H), 7.18 ± 7.22 (m, 4H),
7.16 (d, J 8.1 Hz, 2H), 5.88 (d, J 5.8 Hz, 1H), 4.52 (d, J 5.8 Hz, 1H), 2.36
After drying the collected organic phase over Na2SO4, removal of the solvent
(s, 3H), 2.30 (s, 3H); 13C NMR (100 MHz, CDCl
under reduced pressure gave the crude product. Crystallization at
138.3, 136.9, 131.5, 130.0, 129.7, 129.6, 128.1, 76.1, 22.1, 21.6.
À 188C from isohexane/ethyl acetate afforded the pure product as a whitesolid; yield: 3.03 g (93%, > 99% ee); mp 558 C [Lit.[34], mp 558 C for racemiccompound]; [a]20
D : À 156.0 (c 1.0, CH3OH) [Lit.[3c], [a]r:t:
OH) for 66% ee]; HPLC (Chiralpak AD, n-hexane/2-propanol 90:10, flow
(R)-1,2-Bis(2,4-difluorophenyl)-2-hydroxyethan-1-one (2p)
0.90 mL minÀ1, 20 8C): Rt (R) 41.0 min; Rt (S) 54.1 min; 1H NMR(300 MHz, CDCl3): d 7.46 ± 7.51 (m, 2H), 7.22 ± 7.34 (m, 2H), 7.07 (d,
Semisolid; yield: 87% (> 99% ee); [a]20
J 8.4 Hz, 1H), 6.94 (d, J 6.9 Hz, 1H), 6.86 (t, J 2.4 Hz, 1H), 6.82 (d, J
(Chiralpak AD): Rt (R) 17.3 min; Rt (S) 18.3 min; 1H NMR (400 MHz,
8.4 Hz, 1H), 5.90 (d, J 6.1 Hz, 1H), 4.54 (d, J 6.1 Hz, 1H), 3.81(s, 3H), 3.77
CDCl3/CCl4): d 7.82 ± 7.97 (m, 2H), 6.86 ± 7.10 (m, 4H), 5.87 (s, 1H), 4.18
(s, 3H); 13C NMR (75.5 MHz, CDCl3): d 198.9, 160.3, 159.9, 140.6, 134.9,
(br.s, 1H); 13C NMR (100 MHz, CDCl3/CCl4): d 195.2 (d, J 5 Hz), 166.3
130.4, 129.9, 122.0, 120.7, 120.3, 114.3, 113.5, 113.3, 76.4, 55.6, 55.4.
Enantioselective Synthesis of a-Hydroxy Ketones
Representative Example for the Synthesis of (R)-2-Hydroxy-
(R)-1-(3-Bromophenyl)-2-hydroxypropan-1-one (3f)
1-phenylpropan-1-one Derivatives: (R)-2-Hydroxy-1-phenylpropan-1-one [(R)-2-HPP] (3a)
OB, isohexane/2-propanol 95:5, flow 0.75 mL minÀ1, 20 8C): Rt (S) 23.0 min; R
Benzaldehyde (212 mg, 2 mmol) was dissolved in a mixture of dimethyl
t (R) 33.7 min; 1H NMR (400 MHz, CDCl3/CCl4): d 8.04 ±
8.05 (m, 1H), 7.82 ± 7.84 (m, 1H), 7.73 ± 7.75 (m, 1H), 7.36 ± 7.40 (m, 1H), 5.09
sulfoxide (20 mL) and potassium phosphate buffer [80 mL, 50 mM, pH 7.0,
(q, J 6.9 Hz, 1H), 3.78 (br.s, 1H), 1.41 (d, J 6.9 Hz, 3H); 13C NMR (100
containing MgSO4 (2.5 mM) andThDP (0.15 mM)]. To this solution 88 mg
(2 mmol) acetaldehyde was added. After addition of BAL (20 U) the
3/CCl4): d 200.3, 141.3, 136.7, 132.0, 130.4, 126.4, 123.4, 69.8,
reaction mixture was allowedto standat 258 C. After 24 h 20 U of BAL and176 mg (4 mmol) of acetaldehyde were added. This was repeated every 24 h. After 96 h the conversion was determined as 97% (GC-MS). Work-upaccording to the former procedure afforded (R)-2-HPP as a viscous oil; yield:285 mg (94%, > 99% ee); [a]22
(R)-2-Hydroxy-1-(3-methoxyphenyl)propan-1-one (3g)
D : À 80.9 (c 2.0, CHCl3) for > 95% ee (S)];
HPLC (Chiralpak AD, isohexane/2-propanol 90:10, flow 0.80 mL minÀ1,
Viscous oil; yield: 80% (> 99% ee); [a]20
D : 67.8 (c 1.0, CHCl3) [Lit.[11c], [a]20
20 8C): Rt (S) 12.1 min; Rt (R) 14.3 min; 1H NMR (400 MHz, CDCl3/
À65.2 (c 1.1, CHCl3) for 96% ee (S)]; HPLC (Chiralcel OB, isohexane/2-
CCl4): d 7.90 (dd, J 1.4, 8.2 Hz, 2H), 7.40 ± 7.60 (m, 3H), 5.13 (q, J
propanol 90:10, flow 0.75 mL minÀ1, 20 8C): Rt (S) 12.9 min; Rt (R)
6.0 Hz, 1H), 3.80 (br.s, 1H), 1.41 (d, J 6.0 Hz, 3H); 13C NMR (100 MHz,
14.4 min; 1H NMR (300 MHz, CDCl3): d 7.15 ± 7.47 (m, 4H), 5.14 (q, J
CDCl3/CCl4): d 202.7, 134.4, 134.0, 128.9, 128.7, 69.2, 22.0.
6.8 Hz, 1H), 3.89 (s, 3H), 3.78 (d, J 6.8 Hz, 1H), 1.45 (d, J 6.8 Hz, 3H); 13CNMR (100 MHz, CDCl3/CCl4): d 201.9, 160.2, 135.2, 130.1, 121.9, 121.6,113.4, 69.5, 55.5, 22.5.
(R)-1-(2-Fluorophenyl)-2-hydroxypropan-1-one (3b)
(R)-1-(4-Chlorophenyl)-2-hydroxypropan-1-one (3h)
(Chiralpak AD, isohexane/2-propanol 90:10, flow 0.80 mL minÀ1, 20 8C):Rt (S) 9.7 min; Rt (R) 11.1 min; 1H NMR (400 MHz, CDCl3/CCl4): d 7.81 ± 7.90 (m, 1H), 7.56 ± 7.67 (m, 1H), 7.12 ± 7.31 (m, 2H), 4.96 (q, J
Viscous oil; yield: 88% (> 99% ee); [a]20
6.8 Hz, 1H), 3.72 (br.s, 1H), 1.29 (d, J 6.8 Hz, 3H); 13C NMR (100 MHz,
15.2 (c 1.0 ± 2.0, CHCl3) for 83% ee]; HPLC (Chiralcel OB, isohexane/2-
propanol 95:5, flow 0.75 mL minÀ1, 20 8C): R
3/CCl4): d 198.2, 163.8 (d, J 251 Hz), 134.5 (d, J 12 Hz), 131.3,
129.9, 124.5, 115.9 (d, J 23 Hz), 72.2, 21.1.
28.9 min.; 1H NMR (400 MHz, CDCl3/CCl4): d 7.83 (d, J 8.3 Hz, 2H),7.48 (d, J 8.3 Hz, 2H), 4.98 (q, J 6.7 Hz, 1H), 3.59 (br.s, 1H), 1.42 (d, J 6.7 Hz, 3H); 13C NMR (100 MHz, CDCl3/CCl4): d 199.5, 134.6, 132.5,130.9, 129.1, 69.5, 22.1.
(R)-2-Hydroxy-1-(2-methoxyphenyl)propan-1-one (3c)
Viscous oil; yield: 63% (> 99% ee); [a]20
(Chiralcel OB, isohexane/2-propanol 98:2, flow 0.75 mL minÀ1, 20 8C): Rt
(R)-1-(4-Bromophenyl)-2-hydroxypropan-1-one (3i)
(S) 34.9 min; Rt (R) 42.7 min; 1H NMR (400 MHz, CDCl3/CCl4): d 7.70 ± 7.78 (m, 1H), 7.39 ± 7.51 (m, 1H), 6.91 ± 7.01 (m, 2H), 5.05 (q, J 6.8 Hz, 1H), 3.89 (s, 3H), 3.68 (br.s, 1H),1.42 (d, J 6.8 Hz, 3H); 13C NMR
Viscous oil; yield: 86% (> 99% ee); [a]20
(Chiralcel OB, isohexane/2-propanol 95:5, flow 0.75 mL minÀ1, 20 8C): Rt
3/CCl4): d 203.7, 158.2, 134.5, 131.3, 125.1, 121.1, 111.3,
72.9, 55.2, 20.7; HR-MS: m/z: calcd. for C
(S) 19.2 min; Rt (R) 27.6 min; 1H NMR (400 MHz, CDCl3/CCl4): d
7.73 (d, J 8.5 Hz, 2H), 7.58 (d, J 8.5 Hz, 2H), 4.96 (q, J 7.0 Hz, 1H), 3.57
(br.s, 1H), 1.40 (d, J 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3/CCl4): d 200.4, 137.1, 133.0, 131.4, 129.4, 71.4, 22.4.
(R)-1-(3-Fluorophenyl)-2-hydroxypropan-1-one (3d)
(R)-2-Hydroxy-1-(4-methoxyphenyl)propan-1-one (3j)
isohexane/2-propanol 95:5, flow 0.75 mL minÀ1, 20 8C): Rt (S) 16.5 min;
Viscous oil; yield: 64% (> 99% ee); [a]20
Rt (R) 25.8 min; 1H NMR (400 MHz, CDCl3/CCl4): d 7.71 ± 7.76 (m, 1H),
32.8 (c 1.4, CH3OH) for 99% ee; Lit.[36], [a]20
7.59 ± 7.66 (m, 1H), 7.41 ± 7.50 (m, 1H), 7.22 ± 7.31 (m, 1H), 4.92 (q, J 6.8 Hz,
: À 41.1 (c 1.12, CH3OH) for 92% ee (S)]; HPLC
1H), 3.71 (br.s, 1H), 1.41 (d, J 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3/
(Chiralcel OB, isohexane/2-propanol 95:5, flow 0.75 mL minÀ1, 20 8C): Rt
CCl4): d 198.8, 164.1 (d, J 246 Hz), 134.2 (d, J 7 Hz), 130.2 (d, J 7 Hz),
(S) 26.9 min; Rt (R) 36.4 min; 1H NMR (400 MHz, CDCl3/CCl4): d
124.3 (d, J 3 Hz), 114.1 (d, J 23 Hz), 113.8 (d, J 22 Hz), 71.8, 21.4.
7.92 (d, J 8.6 Hz, 2H), 6.97 (d, J 8.6 Hz, 2H), 5.11 (q, J 7.0 Hz, 1H), 3.89(s, 3H), 3.52 (br.s, 1H), 1.44 (d, J 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3/CCl4): d 200.6, 164.1, 130.9, 125.9, 114.0, 68.8, 55.5, 22.6.
(R)-1-(3-Chlorophenyl)-2-hydroxypropan-1-one (3e)
Viscous oil; yield: 94% (> 99% ee); [a]20
(Chiralcel OB, isohexane/2-propanol 98:2, flow 0.75 mL minÀ1, 20 8C): R
(R)-1-(3,5-Difluorophenyl)-2-hydroxypropan-1-one (3l)
(S) 28.5 min; Rt (R) 48.2 min; 1H NMR (300 MHz, CDCl3): d 7.91 (s,1H), 7.69 (d, J 8.0 Hz, 1H), 7.56 (d, J 8.0 Hz, 1H), 7.43 (dd, J 8.0 Hz,
Viscous oil; yield: 67% (> 99% ee); [a]20
1H), 5.12 (q, J 7.0 Hz, 1H), 3.70 (br. s, 1H), 1.41 (d, J 7.0 Hz, 3H);
(Chiralcel OB, isohexane/2-propanol 95:5, flow 0.75 mL minÀ1, 20 8C): Rt
13C NMR (100 MHz, CDCl3/CCl4): d 200.9, 135.7, 133.8, 130.6, 130.3, 129.1,
(S) 12.7 min; Rt (R) 16.7 min; 1H NMR (400 MHz, CDCl3/CCl4): d
126.9, 69.7, 22.2; HR-MS m/z calcd. for C9H9O2Cl [M]: 184.0291, found:
7.78 ± 8.18 (m, 1H), 6.70 ± 7.31 (m, 2H), 4.99 (q, J 6.6 Hz, 1H), 3.36 (br.s,
184.0272; anal. calcd. for C9H9O2Cl: C, 58.55; H, 4.91%; found: C, 58.23; H,
1H), 1.42 (d, J 6.6 Hz, 3H); 13C NMR (75.5 MHz, CDCl3): d 201.3, 163.5
(d, J 252 Hz), 136.5, 112.0 (d, J 17 Hz), 109.6 (t, J 25 Hz), 70.1, 22.3.
(R)-2-Hydroxy-1(3-hydroxy-4-methoxyphenyl)propan-1-one
10.9 min; 1H NMR (400 MHz, CDCl3/CCl4): d 7.91 ± 8.05 (m, 1H), 6.83 ±
7.10 (m, 2H), 5.02 (q, J 6.5 Hz, 1H), 3.76 (br. s, 1H), 1.42 (d, J 6.5 Hz, 3H);13C NMR (75.5 MHz, CDCl3): d 199.5, 166.4 (d, J 259 Hz), 162.2 (d, J 259 Hz), 133.2, 118.7, 113.0 (d, J 21 Hz), 105.1 (dd, J 27 Hz), 72.7, 20.8;
Colorless oil; yield: 80%; (ee not determined); [a]20
HR-MS: m/z calcd. for C9H8O2F2 [M]: 186.0493, found: 186.0520.
NMR (300 MHz, CDCl3): d 7.52 (s, 1H), 7.47 (d, J 8.1 Hz, 1H), 6.92 (d,J 8.1 Hz, 1H), 5.82 (br.s, 1H), 5.11 (q, J 7.1 Hz, 1H), 3.97 (s, 3H), 3.80(br.s, 1H), 1.44 (d, J 7.1 Hz, 3H); 13C NMR (75.5 MHz, CDCl3): d 201.6,153.5, 146.6, 131.5, 124.8, 114.8, 113.2, 71.9, 56.3, 23.8; HR-MS: m/z: calcd. for
C10H12O4 [M]: 196.0735; found: 196.0735.
Financial support by the Deutsche Forschungsgemeinschaft in the scope ofSFB 380 is gratefully acknowledged. We thank Alexander von Humboldt
(R)-2-Hydroxy-1(4-hydroxy-3-methoxyphenyl)propan-1-one
Foundation, DAAD, Turkish Scientific and Technical Research Council(TUBITAK) and Turkish State Planning Organisation (for GC-LC-MS). E.
J. is recipient of a Konrad Adenauer Stiftung fellowship. The authors thankProf. R. Vicunƒa for providing the BAL gene.
Colorless oil; yield: 90%; (ee not determined); [a]20
NMR (300 MHz, CDCl3): d 7.58 (s, 1H), 7.42 (d, J 8.4 Hz, 1H), 6.96 (d,J 8.4 Hz, 1H), 6.35 (br.s, 1H), 5.10 (q, J 7.0 Hz, 1H), 3.93 (br. s, 4H), 1.44(d, J 7.0 Hz, 3H); 13C NMR (75.5 MHz, CDCl
126.5, 124.7, 114.8, 111.1, 69.5, 56.8, 23.6; HR-MS: m/z: calcd. for C10H12O4[M]: 196.0736; found: 196.0741; anal. calcd. for C10H12O4: C, 61.22, H,
[1] a) F. Wˆhler, J. Liebig, Ann. Pharm. 1832, 3, 249 ± 282; b) H.
Staudinger, Ber. Dtsch. Chem. Ges. 1913, 46, 3535 ± 3538.
[2] a) T. Ukai, R. Tanaka, S. Dokawa, J. Pharm. Soc. Jpn. 1943, 63, 296 ±
300; b) R. Breslow, J. Am. Chem. Soc. 1958, 80, 3719 ± 3726; c) H.
(R)-2-Hydroxy-1(3,4,5-trimethoxyphenyl)propan-1-one (3o)
Stetter, Y. R‰msch, H. Kuhlmann, Synthesis 1976, 733 ± 735; d) J. Castells, F. Lo¬pez-Calahorra, L. Domingo, J. Org. Chem. 1988, 53,4433 ± 4436; e) T. Matsumoto, M. Ohishi, S. Inoue, J. Org. Chem.
Colorless oil; yield: 92% (> 99% ee); [a]20
(Chiralpak AD, isohexane/2-propanol 95:5, flow 0.75 mL minÀ1, 20 8C): Rt
[3] a) J. C. Sheehan, T. Hara, J. Org. Chem. 1974, 39, 1196 ± 1199; b) R. L.
(S) 28.5 min; Rt (R) 36.4 min; 1H NMR (300 MHz, CDCl3): d 7.11 (s,
Knight, F. J. Leeper, J. Chem. Soc. Perkin Trans. 1 1998, 1891 ± 1893;
2H), 5.07 (q, J 7.1 Hz, 1H), 3.81 (s, 9H), 3.72 (br. s, 1H), 1.45 (d, J 7.1 Hz,
c) D. Enders, K. Breuer, J. H. Teles, Helv. Chim. Acta 1996, 79, 1217 ±
3H); 13C NMR (75.5 MHz, CDCl3): d 201.5, 153.5, 143.5, 128.9, 106.4, 69.4,
1221; d) D. Enders, K. Breuer in Comprehensive Asymmetric
56.6, 56.4, 23.6; HR-MS: m/z: calcd. for C12H16O5 [M]: 240.0992; found:
Catalysis, Vol. 2 (Eds.: E. N. Jacobsen, A. Pfaltz, H. Yamamoto),
240.0995; anal. calcd. for C12H16O5: C, 59.99, H, 6.71%; found: C, 59.84, H,
Springer, Berlin, 1999, pp. 1093-1102.
[4] For some recent examples see: a) W. Adam, M. M¸ller, F. Prechtl, J.
Org. Chem. 1994, 59, 2358 ± 2364; b) W. Adam, R. T. Fell, V. R. Stegmann, C. R. Saha-Mˆller, J. Am. Chem. Soc. 1998, 120, 708 ± 714;
(R)-1-(2-Furanyl)-2-hydroxypropan-1-one (3p)[37]
c) W. Adam, C. R. Saha-Mˆller, C.-G. Zhao, Tetrahedron: Asymmetry1998, 9, 4117 ± 4122; d) W. Adam, R. T. Fell, C. R. Saha-Mˆller, C.-G. Zhao, Tetrahedron: Asymmetry 1998, 9, 397 ± 401; e) F. A. Davies,
Viscous oil; yield: 61%; (> 99% ee); [a]20
B.-C. Chen, Chem. Rev. 1992, 92, 919 ± 934; f) T. Hashiyama, K.
(Chiralcel OB, isohexane/2-propanol 90:10, flow 0.75 mL minÀ1, 20 8C): Rt
Morikawa, K. B. Sharpless, J. Org. Chem. 1992, 57, 5067 ± 5068; g) T.
(S) 13.7 min; Rt (R) 16.9 min; 1H NMR (400 MHz, CDCl3/CCl4): d
Wirth, U. H. Hirt, Tetrahedron: Asymmetry 1997, 8, 23 ± 26; h) T.
7.40 (m, 1H), 6.55 (d, J 3.4 Hz, 1H), 6.36 (dd, J 1.7, 3.4 Hz, 1H), 5.01 (q,
Koike, K. Murata, T. Ikariya, Org. Lett. 2000, 2, 3833 ± 3836; i) Y.
J 6.7 Hz, 1H), 3.66 (br.s, 1H), 1.45 (d, J 6.7 Hz, 3H); 13C NMR (100 MHz,
Zhu, L. Shu, Y. Tu, Y. Shi, J. Org. Chem. 2001, 66, 1818 ± 1826.
CDCl3/CCl4): d 196.2, 150.3, 144.1, 111.6, 110.4, 71.2, 21.8.
[5] W. Adam, M. Lazarus, C. R. Saha-Mˆller, P. Schreier, Acc. Chem.
Res. 1999, 32, 837 ± 845, andreferences citedtherein.
[6] a) R. Che√nevert, S. Thiboutot, Chem. Lett. 1988, 1191 ± 1192; b) K.
Representative Example for the Synthesis of (R)-2-Hydroxy-
Nakamura, S. Kondo, Y. Kawai, K. Hida, K. Kitano, A. Ohno,Tetrahedron: Asymmetry 1996, 7, 409 ± 412; c) Y. Kawai, K. Hida, M.
1-phenylpropan-1-one Derivatives on a Preparative Scale:
Tsujimoto, S. Kondo, K. Kitano, K. Nakamura, A. Ohno, Bull. Chem.
(R)-1-(2,4-Difluorophenyl)-2-hydroxypropan-1-one (3k)
Soc. Jpn. 1999, 72, 99 ± 102; d) R. Csuk, B. I. Gl‰nzer, Chem. Rev. 1991, 91, 49 ± 97.
2,4-Difluorobenzaldehyde (4.2 g, 29.7 mmol) was dissolved in a mixture of
[7] W. Adam, R. T. Fell, U. Hoch, C. R. Saha-Mˆller, P. Schreier,
dimethyl sulfoxide (100 mL) and potassium phosphate buffer [380 mL,
Tetrahedron: Asymmetry 1995, 6, 1047 ± 1050.
50 mM, pH 7.0, containing MgSO4 (2.5 mM) andThDP (0.15 mM)]. After
[8] a) D. J. Silva, D. Kahne, J. Am. Chem. Soc. 1994, 116, 2641 ± 2642;
addition of acetaldehyde (2.6 g, 60.0 mmol) the reaction was started by
b) W. Adam, M. T. DÌaz, R. T. Fell, C. R. Saha-Mˆller, Tetrahedron:
adding 480 U of BAL (7.5 g of wet cells of E. coli recBAL,[21] suspended in
Asymmetry 1996, 7, 2207 ± 2210; c) Y. Aoyagi, N. Agata, N. Shibata,
20 mL standard buffer, were disrupted by sonification and centrifuged to
M. Horiguchi, R. M. Williams, Tetrahedron Lett. 2000, 41, 10159 ±
afford20 mL of a solution containing 480 U BAL) andthe reaction mixture
was smoothly stirredat 258 C. Conversion was monitoredby GC-MS by
[9] a) A. S. Demir, H. Hamamci, C. Tanyeli, I. M. Akhmedov, F.
extracting analytical samples with dichloromethane followed by phase
Doganel, Tetrahedron: Asymmetry 1998, 9, 1673 ± 1677; b) C. Tanyeli,
separation by centrifugation. After 38 h (99% conversion) the reaction
A. S. Demir, E. Dikici, Tetrahedron: Asymmetry 1996, 7, 2399 ± 2402;
mixture was filteredusing a foldedfilter andan ultrafiltration membrane
c) T. H. Duh, Y. F. Wang, M. J. Wu, Tetrahedron: Asymmetry 1993, 4,
(cut-off 10 kDa, Sartocon Micro module, Sartorius AG, Gˆttingen). Then,
1793 ± 1794; d) H. Kajiro, S. Mitamura, A. Mori, T. Hiyama,
100 g sodium chloride and 200 mL ethyl acetate were added to the permeate.
Tetrahedron: Asymmetry 1998, 9, 907 ± 910.
The organic layer was separated, dried with Na2SO4 andconcentratedunder
[10] For recent review of ThDP-dependent enzymes see: a) G. A.
vacuum to give 3k as a yellow oil; yield: 3.6 g (65%, 97% ee); [a]20
Sprenger, M. Pohl, J. Mol. Catal. B: Enzym. 1999, 6, 145 ± 159;
D : 73.0 (c 1.0, CHCl3) for > 98% ee; Lit.[19f], [a]D
b) U. Schˆrken, G. A. Sprenger, Biochim. Biophys. Acta 1998, 1385,
(c 1.17, CHCl3) for > 99.5% ee (S)]; HPLC (Chiralpak AD, isohexane/2-
229 ± 243; c) for recent review on enzymatic C-C bondformation:
propanol 90:10, flow 0.80 mL minÀ1, 20 8C): Rt (S) 8.8 min; Rt (R)
W.-D. Fessner, C. Walter, Top. Curr. Chem. 1996, 184, 97 ± 194.
Enantioselective Synthesis of a-Hydroxy Ketones
[11] a) H. Iding, T. D¸nnwald, L. Greiner, A. Liese, M. M¸ller, P. Siegert,
[21] E. Janzen, M. Pohl, to be published.
J. Grˆtzinger, A. S. Demir, M. Pohl, Chem. Eur. J. 2000, 6, 1483 ±
[22] a) R. Kluger, J. F. Lam, J. P. Pezacki, C.-M. Yang, J. Am. Chem. Soc.
1495; b) A. S. Demir, T. D¸nnwald, H. Iding, M. Pohl, M. M¸ller,
1995, 117, 11383 ± 11389; b) R. Kluger, Pure Appl. Chem. 1997, 69,
Tetrahedron: Asymmmetry 1999, 10, 4769 ± 4774; c) T. D¸nnwald,
1957 ± 1967; c) D. Kern, G. Kern, H. Neef, K. Tittmann, M. Kill-
A. S. Demir, P. Siegert, M. Pohl, M. M¸ller, Eur. J. Org. Chem. 2000,
enberg-Jabs, C. Wikner, G. Schneider, G. H¸bner, Science 1997, 275,
2161 ± 2170; d) T. D¸nnwald, M. M¸ller, J. Org. Chem. 2000, 65,
[23] J. Kenyon, R. L. Patel, J. Chem. Soc. 1965, 435 ± 438.
[12] A. S. Demir, M. Pohl, E. Janzen, M. M¸ller, J. Chem. Soc. Perkin
[24] A. Miyashita, Y. Suzuki, K. Iwamoto, T. Higashino, Chem. Pharm.
[13] a) B. Gonza¬les, R. Vicunƒa, J. Bacteriol. 1989, 171, 2401 ± 2405; b) P.
[25] N. J. Clecak, R. J. Cox (Int. Business Machines Corp.), US Patent
Hinrichsen, I. Go¬mez, R. Vicunƒa, Gene 1994, 144, 137 ± 138.
3499763, 1970; Chem. Abstr. 1970, 73, 89166.
[14] a) H. G. O. Becker, W. Berger, G. Domschke, E. Fanghaenel, J. Faust,
[26] H.-T. Grunder, H.-J. Haink, H. Kurreck, W. J. Richter, W.-D.
M. Fischer, F. Gentz, K. Gewald, R. Gluch, R. Mayer, K. M¸ller, D.
Woggon, Z. Naturforsch. B 1972, 27, 532 ± 538.
Pavel, H. Schmidt, K. Schollberg, K. Schwetlick, E. Seiler, G.
[27] M. W. Winkley, G. R. Wendt (Am. Home Products Corp.), US Patent
Zeppenfeld, Organikum; Barth Verlag: Leipzig, Berlin, Heidelberg,
4001216, 1977; Chem. Abstr. 1977 87, 39096.
1993, pp. 474 and547; b) K. Deuchert, U. Hertenstein, S. H¸nig, G.
[28] R. E. Lutz, R. S. Murphey, J. Am. Chem. Soc. 1949, 71, 478 ± 481.
Wehner, Chem. Ber. 1979, 112, 2045 ± 2061; c) S. H¸nig, G. Wehner,
[29] M. D. Rozwadowska, Tetrahedron 1985, 41, 3135 ± 3140.
[30] C. W. N. Cumper, A. P. Thurston, J. Chem. Soc. Perkin Trans. 2 1972,
[16] Racemic HPP derivatives were prepared according to refs.[9a, 14b].
[31] R. Fulton, J. Chem. Soc. 1939, 200 ± 201.
[17] Q. K. Fang, Z. Han, P. Grover, D. Kessler, C. H. Senanayake, S. A.
[32] Z. Yongmin, L. Ping, F. Weigiang, Hangzhou Daxue Yuebao, Ziran
Wald, Tetrahedron: Asymmetry 2000, 11, 3659 ± 3663.
[18] H. G. Leuenberger, P. K. Matzinger, B. Wirz, Chimia 1999, 53, 536 ±
[33] I. Deschamps, W. J. King, F. F. Nord, J. Org. Chem. 1949, 14, 184 ±
[19] a) M. J. Monteith, Spec. Chem. 1999, 19, 276 ± 278; b) D. Gala, D. J.
[34] A. Schˆnberg, W. Malchow, Ber. Dtsch. Chem. Ges. 1922, 55, 3746 ±
DiBenedetto, Tetrahedron: Asymmetry 1997, 8, 3047 ± 3050; c) D.
Gala, D. J. DiBenedetto, J. E. Clark, B. L. Murphy, D. P. Schumacher,
[35] F. A. Davis, M. C. Weismiller, C. K. Murphy, R. T. Reddy, B.-C.
M. Steinman, Tetrahedron Lett. 1996, 37, 611 ± 614; d) D. Gala, D. J.
Chen, J. Org. Chem. 1992, 57, 7274 ± 7285.
DiBenedetto, I. Mergelsberg, M. Kugelmann, Tetrahedron Lett. 1996,
[36] a) Y. Honda, A. Ogi, G. Tsuchihashi, Bull. Chem. Soc. Jpn. 1987, 60,
37, 8117 ± 8120; e) D. Gala, D. J. DiBenedetto, Tetrahedron Lett. 1994,
1027 ± 1036; b) P. Bovicelli, A. Sanetti, Tetrahedron 1996, 52, 10969 ±
35, 8299 ± 8302; f) T. Konosu, T. Miyaoka, Y. Tajima, S. Oida, Chem.
Pharm. Bull. 1991, 39, 2241 ± 2246.
[37] D. H. G. Crout, H. Dalton, D. W. Hutchinson, M. Miyagoshi, J. Chem.
[20] Cf. G. E. Boswell, D. L. Musso, A. O. Davis, J. L. Kelley, F. E. Soroko,
Soc. Perkin Trans. 1 1991, 1329 ± 1334.
B. R. Cooper, J. Heterocycl. Chem. 1997, 34, 1813 ± 1820.
Produced by Dr. David Voss, Specialist Renal Physician in the interest of public health education. Diabetes mellitus and the kidney Information Sheet What is diabetes mellitus? Diabetes mellitus (often referred to just as diabetes) is a lack of insulin. As a result of the lack of insulin, glucose is not handled properly in the human body, and high blood sugar (glucose) levels result. The high
SIMULTANEOUS DETERMINATION OF PHENACETIN AND CAFFEINE USING A DOUBLE BEAM SPECTROMETER To simultaneously determine the concentrations of phenacetin andcaffeine in an unknown aqueous solution using scanning UV-visible spectrophotometryat two wavelengths. Introduction: This experiment is a portion of the standard analysis for the three activecomponents in (Aspirin/Phenacetin/Caffeine) tablet